Углекислый газ для питания и роста растений

Подкормка комнатных цветов

Комнатные растения сложнее «подкормить» CO2, нежели плодовые культуры в теплице, в силу меньшего пространства и нахождения в комнате людей. Но иногда это также необходимо. Существуют специальные добавки, которые повышают уровень углекислого газа в почве. Так, к ним относятся специальные препараты. Они более известны как «ЭМ» – аббревиатура от «эффективные микроорганизмы». К ним относятся грибки, молочнокислые бактерии, а также дрожжи. К безусловным преимуществам использования данных культур является их естественность и экологическая чистота. Бактерии не чужды природе, в отличие от многих видов удобрений.

В частности, дрожжи были не раз и не два исследованы учёными, и было доказано: они способствуют реминерализации почвы, активизируют микроорганизмы и насыщают почву диоксидом углерода. Разумеется, цветам подобные стимуляторы нужны в меньшем объёме, чем плодовым культурам, но тоже не помешают.

Рецепт дрожжевого удобрения прост: нужно растворить десять грамм дрожжей и столовую ложку сахара в литре еле тёплой воды. Если дрожжи сухие, то нужно взять больше сахара – три столовых ложки. После этого смеси нужно дать выстояться примерно два часа. После разведения водой в пропорции один к пяти можно поливать свои цветы.

Фотосинтез в цифрах

Ежегодно растительность Земли связывает 170 млрд т углерода, и ежегодно в растениях синтезируется около 400 млрд т органических веществ.

Наиболее высокая производительность кислорода отмечена у дуба и лиственницы (6,7 т/га), у сосны и ели (4,8—5,9 т/га). Ежегодно 1 га средневозрастного (60-летнего) соснового леса поглощает 14,4 т углекислоты и выделяет 10,9 т кислорода. За тот же период 1 га 40-летней дубравы поглощает 18 т углекислоты и выделяет 13,9 т кислорода.

Зеленые насаждения на площади 1 га поглощают за 1 ч столько углекислоты, сколько в течение этого времени выдыхают 200 человек. При образовании 1 т абсолютно сухой древесины независимо от древесной породы поглощается в среднем 1,83 т углекислоты и выделяется 1,32 т кислорода.

Для обеспечения поглощения нормы кислорода 1 человеком в год (400 кг) необходимо иметь площадь лесов на 1 человека 0,1—0,3 га. Одно крупное дерево выделяет столько кислорода, сколько нужно 1 человеку в сутки для дыхания.

Дневное дыхание растений

Дневное дыхание связано с двумя процессами: непосредственно дыханием и фотосинтезом. Процесс дыхания, как и у человека, связан с окислением органических соединений и выделением диоксида углерода, воды и энергии. Вместо человеческих легких выступает вся поверхность растения. Химическая формула, описывающая реакции в процессе дыхания растений: 

C6H12O6 + 6O2 → 6CO2 + 6H2O + 674 ккал.

Любое дерево способно дышать всей поверхностью, даже поверхностью плодов. Но наиболее активно процесс дыхания происходит через устья листа, откуда и попадает по межклеточному пространству большая часть необходимых газов.

Если речь идет о дневном времени суток, то дыхание не столь заметно, как ночью. Поскольку работа растения направлена большей частью на постоянное запасание энергии в виде органических соединений (глюкозы). Попадающий в листья газ, при содействии воды и энергии солнечного света в хлоропластах превращается в глюкозу, которую организм запасает для дальнейшего использования. Собственно дыхание и является этим дальнейшим использованием.

Запасенная глюкоза, с помощью воды и кислорода разлагается на молекулы аденозинтрифосфорной кислоты (АТФ), углекислый газ и водород. АТФ – это твердая энергия. Биологический аккумулятор клеток, который обеспечивает энергетическими запасами все живое на планете. Позднее эти запасы будут использованы в жизнедеятельности каждой молекулы организма.

Кажется, что образуется замкнутый круг: фотосинтез происходит с образованием глюкозы и кислорода, но что толку, если потом в результате дыхания растений выделяется диоксид углерода и АТФ. А энергию растения расходуют лично на себя, ничего не оставляя другим. Но весь вопрос в количестве. Далеко не весь кислород, который образуется во время фотосинтеза, поглощается организмом во время дыхания. Растения производят в разы больше, чем поглощают. Может этим они и отличаются от человека. А все энергетические запасы растений рано или поздно переходят в запасы животных или человека. Так растения отдают все свои накопления ради существования экосистемы Земли.

С увеличением процента содержания углекислого газа в атмосфере теоретически можно ускорить рост зеленых насаждений на Земле. Многие исследования показывают, что в условиях теплиц СО2 можно использовать как «воздушное удобрение», ведь иногда при дыхании кислородом растениями поглощается еще и углекислый газ. Но так происходит это только в условиях экспериментов. На открытых пространствах начавшийся рост активизирует насекомых, которые не позволяют лесам и джунглям разрастись. А культурные растения от таких добавок превращаются в легкую добычу для вредителей. Поэтому, чтобы не говорили скептики, нарушение обмена углеродом это плохо.

Что такое дыхание растений?

Дыхание растений представляет собой серию ферментативных реакций, которые позволяют растениям превращать накопленную энергию углеводов, вырабатываемых в процессе фотосинтеза, в форму энергии, которую они могут использовать для ускорения роста и метаболических процессов.

Посредством фотосинтеза растения превращают солнечный свет в потенциальную энергию в виде химических связей углеводных молекул. Однако, чтобы использовать эту накопленную энергию для обеспечения жизненно важных процессов – от роста и размножения до заживления поврежденных структур – растения должны преобразовать ее в пригодную для использования форму. Это преобразование происходит посредством клеточного дыхания, основного биохимического пути, также обнаруженного у животных и других организмов.

Как животные и люди, растения тоже дышат

Растения нуждаются в кислороде для дыхания, которые в свою очередь выделяют углекислый газ. В отличие от животных и людей, растения не имеют каких-либо специализированных структур для газообразного обмена и по сравнению с животными и людьми корни растений, стебли и листья дышат с очень низкой скоростью.

10 домашних растений, активно выделяющих кислород в ночное время

В комнате со свежим, чистым воздухом легче заснуть и проще выспаться. Большинство растений выделяют кислород преимущественно днем, а в темное время суток, напротив, им «дышат», отдавая в окружающую среду углекислый газ. А вот у растений из нашего списка все наоборот — они идеально подходят для помещений, где спят.

Каланхое

Растение активно выделяет кислород как в светлое, так и в темное время суток. Более того, пары эфирных масел каланхое — признанные природные антидепрессанты. Поставьте цветок в солнечное место и не забывайте его поливать, чтобы воздух в комнате всегда был свежим.

Фикус Бенджамина

Это неприхотливое растение — мощный источник кислорода. К тому же, зеленое деревце очень хорошо вписывается в интерьер спальни. Главное условие — доступ солнечного света и регулярный полив.

Алоэ вера

Алоэ вера не обладает привлекательной внешностью, но при этом растение поистине уникально. Его соком лечат многие заболевания, включая проблемы с кожей. Но это не единственное достоинство суккулента.

Поставьте горшок в помещение с новой мебелью — вы можете быть уверены, что растение «вытянет» из воздуха все вредные вещества, включая токсичный формальдегид.

Сансевиерия («Тещин язык»)

Несмотря на довольно недоброе название, прижившееся в народе, это домашнее растение обладает массой полезных свойств. Сансевиерия — мощный природный очиститель воздуха. При этом в особом уходе цветок не нуждается. Практически идеальный вариант для забывчивых хозяев!

Орхидея

В отличие от угловатых суккулентов орхидея — настоящее украшение дома. Цветок способен не только освежить интерьер спальни, но и наполнить воздух в помещении живительным О2. При этом кислород растение выделяет преимущественно ночью. Поставьте горшок с орхидеей недалеко от кровати и наслаждайтесь крепким и здоровым сном!

Зигокактус («Декабрист»)

Как и многие кактусы, декабрист обладает обратным метаболизмом, вырабатывая кислород преимущественно в темное время суток. Растение прекрасно переносит затемнение и хорошо чувствует себя даже в удаленных от окна углах спальни.

Герань

Герань — признанный природный дезинфектор. Пары эфирных масел растения улучшают настроение, избавляют от тревоги и депрессии, а листья наполняют воздух кислородом и озоном. Единственное «но» — специфический аромат цветов, его переносят не все.

Пальма Арека

Растениями из семейства пальмовых часто украшают коридоры больниц и стоматологических клиник. И это не случайно. Зеленые деревца не только выглядят очень декоративно, но и являются мощным источником кислорода.

В квартире пальма тоже будет чувствовать себя хорошо, если обеспечить ей рассеянное освещение и полив очищенной или дождевой водой.

Гербера

Мы привыкли считать герберу цветком скорее уличным, чем домашним. Но это не совсем так. Комнатные виды растения прекрасно подходят для квартир, правда, требуют повышенного качества почвы и заботливого отношения. В ночное время герберы поглощают выделяемый нами углекислый газ, выделяя вместо него кислород — вот почему спать в помещении, где цветет гербера особенно комфортно.

Азадирахта индийская (Ним)

В аюрведе дерево Ним приобрело особое значение. Являясь символом чистоты, оно не просто очищает воздух, но и дезинфицирует его. Азадирахту не переносят многие насекомые — если разместить в комнате горшок с растением, фумигатор вам точно не понадобится.

Экстракт его листьев подавляет рост болезнетворных бактерий и грибков, включая возбудителей опасных заболеваний. Обеспечьте деревцу хорошее освещение и качественную почву, в ответ оно подарит вам здоровый сон и крепкий иммунитет.

{SOURCE}

Выделяют ли кислород водные растения

1. Какие вещества входят в состав растений? В состав растений входят органические вещества, вода и минеральные вещества.

2. Какие органические вещества вы знаете?

Белки, липиды (жиры и жироподобные вещества), углеводы.

3. Какое вещество придаёт листьям зелёную окраску?

Зелёную окраску придаёт листьям зелёный пигмент хлорофилл.

Вопросы в конце параграфа

1. Какие условия необходимы для образования крахмала в листе?

Крахмал образуется только в листьях с хлоропластами и только при наличии воды, света и углекислого газа в воздухе.

2. Какой опыт можно провести, чтобы доказать, что для образования крахмала в листьях необходим свет?

Порядок выполнения опыта доказывающего, что для образования крахмала растению нужен свет:

  1. Поставить какое-нибудь комнатное растение в тёмное место на 3 суток, чтобы произошёл отток питательных веществ от листьев.
  2. Поместить на один из листочков растения плодный лист бумаги с вырезанным словом или картинков.
  3. Поставить растение на солнечный свет или под электрическую лампочку на 8 — 10 часов.
  4. Срезать листочек закрытый листом бумаги, снять бумагу с листочка.
  5. Положить этот листочек в горячий спирт на несколько минут. Подождать пока лист окрасится в зелёный цвет, а листочек станет белым.
  6. Промыть листочек водой и расправить на тарелке.
  7. Облить листочек слабым раствором йода.

Результат опыта: буквы или рисунок, который был вырезан из бумаги и на который попадали солнечные лучи, окрасится в синий цвет. Остальная часть листочка останется белой.

Вывод: Крахмал синеет от йода, значит в освещённой части листа образовался крахмал.

3. Почему раствор йода не окрашивает в синий цвет белую каёмку листа герани окаймлённой?

Органические вещества, в том числе и крахмал, образуются только в клетках с хлоропластами, а в клетках белой каёмки листа герани окаймлённой его нет.

4. Из каких веществ образуется глюкоза в зелёных листьях растений?

Сахар (глюкоза) образуется в зелёных листьях растений только под воздействием света из воды, которую поглощают корни из почвы, и углекислого газа, поступающего через устьица листа.

5. Какой опыт показывает, что наземные растения на свету поглощают углекислый газ и выделяют кислород?

Порядок выполнения опыта доказывающего, что наземные растения на свету поглощают углекислый газ и выделяют кислород:

  1. Взять две большие стеклянные банки и опустить в них стаканы с водой, в которые поставлены веточки с зелёными листьями.
  2. Наполнить банки углекислым газом и очень плотно закрыть их.
  3. Первую банку выставить на яркий свет, а вторую банку поместить в темноту (например в шкаф).
  4. Подождать одни сутки.
  5. Открыть банки и опустить в них горячие лучинки.

Результат опыта: в банке которая находилась на свету лучина останется гореть, а в банке стоящей сутки в темноте сразу погаснет.

Вывод: Для поддержания процесса горения необходим кислород, значит в первой банка (на свету) образовался кислород, а часть углекислого газа была поглощена растением .

Подумайте

1. Можно ли утверждать, что строение листа приспособлено к осуществлению фотосинтеза?

Процесс фотосинтеза — это процесс преобразования неорганических веществ в органические посредством использования световой энергии.

Листья растения прекрасно приспособлены для осуществления этого процесса:

  • устьица листа поглощают углекислый газ из окружающего воздуха;
  • сосуды листа доставляют от корней растения воду;
  • листовая пластина листа поглощает максимальное количество солнечного света;
  • хлоропласты, находящиеся в клетках мякоти листа, под воздействием солнечного света перерабатывают воду и углекислый газ (неорганические вещества) в глюкозу (органическое вещество), то есть осуществляют фотосинтез.

2. Как вы думаете, выделяют ли кислород водные растения?

Что такое фотосинтез

Фотосинтез — процесс, при котором в клетках, содержащих хлорофилл, под действием энергии света образуются органические вещества из неорганических. При фотосинтезе растение поглощает углекислый газ и воду, синтезирует органические вещества и выделяет кислород, как побочный продукт фотосинтеза.

Процессы фотосинтеза идут в тканях, содержащих хлоропласты, — преимущественно, в листе, на который приходится большая часть процессов фотосинтеза. Такая ткань называется хлоренхима, или мезофилл. 

Строение хлоропластов

Чтобы понять, что происходит в растении при фотосинтезе, изучим подробнее хлоропласты. Хлоропласты — это особые пластиды растительных клеток, в которых происходит фотосинтез. Основные элементы структурной организации хлоропластов высших растений представлены на рис.1.

Рис.1. Строение хлоропласта высших растений.

Хлоропласт — это двумембранный органоид. Внешняя мембрана проницаема для большинства органических и неорганических соединений. Она содержит специальные транспортные белки, благодаря которым нужные для работы хлоропласта пептиды и другие вещества попадают в него из цитоплазмы. Внутренняя мембрана обладает избирательной проницаемостью и способна контролировать, какие именно вещества попадут во внутреннее пространство хлоропласта.

Для хлоропластов характерна сложная система внутренних мембран, позволяющая пространственно организовать фотосинтетический аппарат, упорядочить и разделить реакции фотосинтеза, несовместимые между собой, и их продукты. Мембраны образуют тилакоиды, которые, в свою очередь, собираются в «стопки» — граны. Пространство внутри тилакоидов называется внутритилакоидным пространством, или люменом. 

Внутреннее пространство хлоропласта между гранами заполняет строма — гидрофильный слабоструктурированный матрикс. В строме содержатся необходимые для реакций синтеза сахаров ферменты, а также рибосомы, кольцевая молекула ДНК, крахмальные зёрна.

Удобрение CO2 для растений

Следует быть осторожным – как говориться, что чрезмерно, то вредно. Это было неоднократно доказано историей, и человеку не стоит существенно вмешиваться во взаимосвязи природы

Чрезмерное повышение концентрации углекислоты в воздухе вредно для тепличных культур, поэтому следует соблюдать разумную осторожность

Есть ещё пара нюансов:

  1. Увеличение углекислого газа может повлечь увеличенную потребность в воде и минеральных веществах для активного роста.
  2. Слишком активное использование CO2 в качестве стимулятора роста флоры вызовет повышение цен и на него, и на выращенные с его помощью овощи и фрукты. В природе существует замкнутый цикл, в теплице он не возникнет.
  3. Избыток диоксида углерода влечёт за собой прекращение фотосинтеза у некоторых культур. И не только прекращение фотосинтеза: могут быть более тяжкие последствия, например, тяжёлый общий ущерб или повышенная уязвимость перед насекомыми-вредителями. В целом же любое продолжительное изменение.
  4. Проблемы с химическим составом – питательная ценность некоторых зерновых, например, резко снижается, а у сои серьёзно меняется химический состав.

К растениям, которым не так сильно грозит мутация или ущерб из-за повышения концентрации CO2, можно отнести аквариумные. Существуют специальные системы, насыщающие воду воздухом и в том числе объектом этой статьи, углекислотой. Это создаёт оптимальные условия для процветания растений и рыб, и также не даёт развиваться водорослям, которые вытесняют остальную водную флору.

Как ухаживать за зелеными питомцами: несколько основных правил

Растениям кислород жизненно необходим, так же, как и люди, растения не смогут без него прожить. Поэтому если дыхательная система растений нарушена, то получать кислород в полном объеме для правильного роста и развития, они не смогут.

Основная причина, по которой растения не могут правильно дышать – это загрязнение дыхательной системы. Если изучить информацию по уходу за комнатными растениями, то обязательно одним из пунктов будет очищение растения от пыли. Это – обязательная процедура, что бы домашний зеленый питомец был здоров и красив.

Проводить такие гигиенические процедуры нужно регулярно. Но каждое растение требует своего ухода за листьями. Некоторые их них любят летний душ. выставить домашнего питомца на балкон во время дождя, что бы дать каплям смыть с листьев пыль – доставить зеленому питомцу огромную радость. В зимнее время растения можно ополаскивать душем, температура воды при этом должна быть невысокой – около 15-20 градусов.

Некоторые растения трудно перенести в ванную комнату, что бы провести им полноценное купание. Тогда листья, ствол таких питомцев необходимо время от времени протирать чистой влажной тряпочкой. Причем, листья необходимо очищать от пыли с двух сторон. Это – кропотливая процедура, ведь протирая листочки, нужно действовать предельно аккуратно, что бы не сломать растение.

Некоторые виды растений не переносят капель воды на своих листьях, они от этого могут заболеть. Другие же растения просто невозможно очистить от пыли при помощи влажной тряпочки или теплого душа. Эти растения имеют сильно опушенные листья. Пыль на таких листьях проникает достаточно глубоко, к тому же пух не дает воде смыть всю грязь. Таких зеленых питомцев следует очищать от пыли при помощи мягкой кисточки, тщательно обмахивая пыль с каждого листочка.

Как видим, уход за дыхательной системой комнатных зеленых питомцев не сложен. но он должен осуществляться регулярно, что бы растение могло дышать, если можно так сказать, полной грудью.

Спальня, это вам не зимний сад

Гуляя в лесу вы не задумываетесь и не беспокоитесь о количестве кислорода в воздухе. В лесу живет много животных. Никто никогда не слышал о битве между животными и деревьями за кислород. В целом нет причин для беспокойства по этому поводу. Некоторая опасность существует, если вы поместите сотни цветов в спальне, но, как правило, такая идея никому не приходила в голову. На каждые 10 м2 рекомендуется 3-4 растения.

Интересно прочитать по этой теме:

Самые полезные комнатные растения . Они поглощают токсины и отдают кислород.

Алоэ , это домашняя аптечка. Алоэ вера просто вырастить дома. Целебный гель всегда под рукой.

Добро пожаловать в опочивальню

Для комнаты, где человек проводит свое время преимущественно в темное время суток, скорее подойдут растения, которые ночью производят больше всего кислорода, а не поглощают его, когда человек спит

Ведь при недостатке жизненно важного элемента будут возникать головные боли и постоянная усталость. Так какие же комнатные растения будут дарить своим хозяевам кислород и здоровый сон ночью? Предлагаем ТОП самых щедрых и доступных видов

Сансевиерия

Лидером рейтинга растений, выделяющих кислород, можно считать сансевиерию. За свои длинные, жесткие и острые на концах листья в народе она получила название «тещин язык» или «щучий хвост». Кроме того, что эта представительница суккулентов способна выделять большое количество кислорода днем и ночью. Так, она еще и поглощает вредные летучие соединения, которые выделяет мебель и другие предметы обихода. Можно сказать, что лучшего жителя для спальной не найти. Достаточно поставить по одному цветку на каждого ночующего в комнате.

Алоэ

Еще один представитель рода суккулентов, с многовековой историей, используемое многими как эффективное средство народной медицины. Речь идет, конечно же, об алоэ. Сок этого растения применяется при лечении многих болезней. Кроме этого, поставив растение в спальне, можно ночью обогащать воздух кислородом и очищать от формальдегидов круглые сутки

Тем более алоэ неприхотливо в уходе, чем привлекает внимание у начинающих цветоводов

Каланхоэ

Представитель суккулентов и хороший «специалист» по синтезу кислорода ночью – каланхоэ. Он успокаивает, помогает избавляться от негативного настроения и депрессии и также не требует много внимания, лишь солнечного света побольше.

Орхидея

Утонченные орхидеи радуют своих хозяев прекрасными цветами и украшают дом. Но мало кто знает, что они еще и очищают воздух в закрытом пространстве от такого вредного вещества, как ксилол, который выделяется из многих видов красок. А главным достоинством можно считать способность вырабатывать большое количество кислорода по ночам, и это при минимальной затрате внимания и сил по уходу.

Но флористы не рекомендуют украшать этим цветком спальню, так как орхидея энергетический вампир и ночью она наиболее активна.

Спатифиллум

Спатифиллум, он же «женское счастье», настоящий домашний труженик. Он идеален для любого помещения в период отопительного сезона, ведь способен увлажнять воздух, а также очищать от бензола и вырабатывать кислород, когда человек спит. Более того, листья насыщенного зеленого цвета и необычные цветки украсят интерьер любой спальни.

Ромашка

Прекрасные яркие «ромашки» комнатной герберы придадут любому помещению весеннюю атмосферу и прекрасное настроение. Но взамен это утонченное растение потребует к себе немного особого отношения, внимания и ухода. К счастью, все приложенные усилия не пропадут зря, и гербера сполна отблагодарит своих владельцев чистым воздухом ночью и, радующими глаз, цветами утром.

Герань

Действительно, уникальным комнатным растением можно назвать герань. К ней трепетно относилось не одно поколение наших предков, выбирая лучшее место в избе и разговаривая с растением каждый день. Помимо «производства» кислорода ночью, герань насыщает воздух озоном и очищает его от микробов.

Отличительной чертой этого растения является, то, что он сильный энергетический донор. Более того, чудо-цветок благоприятно влияет на уровень гормонов у женщин, успокаивает нервную систему, нормализует давление, укрепляет иммунитет и спасает от бессонницы. Можно было сказать, что герань должна расти в каждом доме, в каждой комнате, если бы не одно «но» – аллергикам и астматикам нужно быть с ней осторожными, ведь выделяемые эфирные масла могут нанести вред таким людям.

Хлорофитум

Многие хозяйки выращивают у себя дома неприметный, на первый взгляд, хлорофитум, не подозревая того, что это настоящий «заводик» по очистке помещения. 4 растения за сутки способны удалить до 90% формальдегидов на площади 10 кв.м. вокруг себя. И, конечно же, хлорофитум добавляет кислород и увлажняет воздух ночью.

Лавр, лаванда и розмарин

Лавр, лаванда и розмарин пусть и не рекордсмены по выработке кислорода, но их успокаивающее и расслабляющие свойства благотворно влияют на сон человека. Поставив в спальне вазон с одним из них, можно избавиться от мигрени, привести давление в норму, оздоровить и очистить воздух в комнате, снять нервное напряжение и значительно улучшить сон.

Лавр

Лаванда

Розмарин

Представленные выше растения, скорее исключения из правил. Такой выбор для опочивальни обусловлен способностью ряда растений вырабатывать кислород, и поглощать углекислоту в темное время суток.

Фотосинтез

Спектры поглощения свободного хлорофилла a ( синий ) и b ( красный ) в растворителе. Спектры молекул хлорофилла несколько изменяются in vivo в зависимости от конкретных взаимодействий пигмент-белок.

Хлорофилл жизненно важен для фотосинтеза , который позволяет растениям поглощать энергию света .

Молекулы хлорофилла расположены внутри и вокруг фотосистем , которые встроены в тилакоидные мембраны хлоропластов . В этих комплексах хлорофилл выполняет три функции. Функция подавляющего большинства хлорофилла (до нескольких сотен молекул на фотосистему) заключается в поглощении света. Сделав это, эти же центры выполняют свою вторую функцию: передачу этой световой энергии посредством резонансной передачи энергии определенной паре хлорофилла в реакционном центре фотосистем. Эта пара выполняет конечную функцию хлорофиллов, разделение зарядов, что приводит к биосинтезу. Двумя принятыми в настоящее время единицами фотосистемы являются фотосистема II и фотосистема I , которые имеют свои собственные отдельные реакционные центры, названные P680 и P700 соответственно. Эти центры названы в честь длины волны (в нанометрах ) их максимума поглощения красного пика. Идентичность, функция и спектральные свойства типов хлорофилла в каждой фотосистеме различны и определяются друг другом и окружающей их белковой структурой. После экстракции из белка в растворитель (например, ацетон или метанол ) эти пигменты хлорофилла могут быть разделены на хлорофилл а и хлорофилл b .

Функция реакционного центра хлорофилла — поглощать световую энергию и передавать ее другим частям фотосистемы. Поглощенная энергия фотона передается электрону в процессе, называемом разделением зарядов. Удаление электрона из хлорофилла — это реакция окисления. Хлорофилл отдает электрон высокой энергии ряду молекулярных промежуточных продуктов, называемых цепью переноса электронов . Заряженный реакционный центр хлорофилла (P680 + ) затем восстанавливается до своего основного состояния, принимая электрон, оторванный от воды. Электрон, который восстанавливает P680 +, в конечном итоге возникает в результате окисления воды до O 2 и H + через несколько промежуточных продуктов. Эта реакция представляет собой то, как фотосинтезирующие организмы, такие как растения, производят газ O 2 , и является источником практически всего O 2 в атмосфере Земли. Фотосистема I обычно работает последовательно с Фотосистемой II; таким образом, P700 + Фотосистемы I обычно снижается, поскольку он принимает электрон через многие промежуточные соединения в тилакоидной мембране, электронами, поступающими, в конечном счете, из Фотосистемы II. Однако реакции переноса электронов в тилакоидных мембранах сложны, и источники электронов, используемые для восстановления P700 +, могут варьироваться.

Электронный поток, производимый пигментами хлорофилла реакционного центра, используется для перекачки ионов H + через тилакоидную мембрану, устанавливая хемиосмотический потенциал, используемый в основном для производства АТФ (запасенной химической энергии) или для восстановления НАДФ + до НАДФН . НАДФН — универсальный агент, используемый для восстановления CO 2 до сахаров, а также для других биосинтетических реакций.

Хлорофилл-белковые комплексы с реакционным центром способны непосредственно поглощать свет и выполнять действия по разделению зарядов без помощи других пигментов хлорофилла, но вероятность того, что это происходит при данной интенсивности света, мала. Таким образом, все другие хлорофиллы в фотосистеме и белки антенного пигмента совместно поглощают световую энергию и направляют ее в реакционный центр. Помимо хлорофилла a , в этих антенных комплексах пигмент-белок присутствуют и другие пигменты, называемые дополнительными пигментами .

Растения поглощают из воздуха и почвы углекислый газ

Самая важная часть питания растений — углекислый газ, они воспроизводят органику из СО2 и воды, а человек окисляет ее обратно до СО2 и воды. Так происходи обмен: человек дает растениям углекислый газ, а они человеку – органику и кислород. Кислород, как и водород, растения получают в основном из воды. Миллионы лет на планете поддерживается разумный баланс упомянутых газов.

Итак, растения поглощают из воздуха углекислый газ, но СО 2 в воздухе катастрофически мало – всего 0,03 %, конечно, культурным растениям, с их явно завышенной продуктивностью, его всегда не хватает. Летом, в солнечный и безветренный день, вокруг листьев быстро создается «вакуум» углекислого газа, и чем выше от земли, тем больше его дефицит. В теплице, уже через 6 недель после внесения навоза уровень СО2 падает до 0,01 %. Установлено: при такой концентрации СО2 фотосинтез резко падает, а при еще меньшей почти замирает.

Но если растения дышат углекислым газом, а его катастрофически не хватает, как объяснить тогда буйное процветание растительного царства. Разве могли растения миллионы лет так рисковать своим выживанием? Например, высоко в горах, на Крайнем Севере? Не поспешил ли Климент Аркадьевич (Тимирязев.), приписав поглощение СО2 только листьям? Если не листьями – как добывают растения столько углерода? У Кузнецова нашелся логичный ответ и на эти вопросы.

Прежде всего: откуда берется углекислый газ воздуха? Энергия биомассы земных растений почти на два порядка больше, чем дают сейчас все виды топлива. Людей еще и не было, а 0,03 % СО2 в воздухе уже были. Получается, не костры, не машины и ТЭЦ поставляют углекислый газ в атмосферу. Огромный объем СО2 способны «выдохнуть» только те, кто съел, окислил всю растительную биомассу – обитатели почв и океанов.

Очевидно: вернуть углекислый газ для растений может только постоянный распад, окисление дерна или подстилки. Итак, источник СО2 – почва. Главный резервуар, хранитель СО2 – почвенная мульча.

Комнатный папоротник

Это растение не слишком распространено в наших домах из-за глупых суеверий. Считается, что папоротник отнимает энергию у человека, живущего рядом с ним. Это, конечно же, просто миф. А вот пользу растение приносит реальную. Находясь в помещении, папоротник быстро осушает его, предотвращая распространение плесени.

Если у вас в квартире повышенная влажность (особенно на кухне), то обязательно заведите себе это растение. Оно не требует большого горшка, может расти в самой скудной почве и не нуждается в сложном уходе. Просто поливайте его раз в неделю, и он будет радовать вас долгие годы.

Будет всего 15 единиц: новый гиперкар McLaren будет называться Sabre

Дочка насмешила: «Почему музыканты не в форме?» (2 истории)

Я готовлю необычные французские тосты и подаю их на шпажках с фруктами

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector